

# **Math Virtual Learning**

# Algebra 2A Polynomial Parent Functions

May 6, 2020



#### Lesson: Sketching Polynomial Parent Functions

#### Learning Target:

LT C1 I can create a sketch of a polynomial function from an equation and create a polynomial equation from a graph.

#### **Objective:**

Students will be able to create an equations from a graph.

## Warm Up

List the transformations of the functions.

1. 
$$y = 6(x - 8)^3 - 5$$
  
2.  $y = 2x^4 + 12$   
3.  $y = (x + 9)^2 - 8$   
4.  $y = \frac{1}{2}(x - 11)^3 + 6$ 

### Warm Up Answers

- 1. Dilation 6, Right 8, down 5
- 2. Dilation 2, up 12
- 3. Left 9, down 8
- 4. Dilation of  $\frac{1}{2}$ , right 11, up 6



For today, we will continue to work with graphing transformations of polynomial functions. Watch the video below for a review of yesterday's topic.

https://www.youtube.com/watch?v=MkP1LJR2PyM

#### Lesson

To graph a transformation, first identify the transformations of a, b, h, and k and then use the table below to find the vertex and two points on the graph.

| Parent | Parent Function   |           | Transformation                     |  |
|--------|-------------------|-----------|------------------------------------|--|
| f(x)   | $f(x) = x^n$      |           | $f(x) = a(\frac{1}{b}(x-h))^n + k$ |  |
| x      | у                 | x         | у                                  |  |
| -1     | (-1) <sup>n</sup> | (-1)b + h | $(-1)^n a + k$                     |  |
| 0      | 0                 | h         | k                                  |  |
| 1      | 1                 | b + h     | a + k                              |  |

#### Practice

For each of the following, list the parent function, the transformations, and then graph the function.

1. 
$$y = (x + 3)^3 - 5$$
  
2.  $y = 2x^5 + 4$   
3.  $y = x^2 + 3$   
4.  $y = \frac{1}{3}(x - 4)^4 + 6$ 

1. 
$$y = (x + 3)^{3} - 5$$
  
Parent:  $x^{3}$   
 $a = 1 \quad h = -3$   
 $b = 1 \quad k = -5$   
 $(-1)b + h^{=}(-1)(1) + (-3) = -4$   
 $h = -3$   
 $b + h = (1) + (-3) = -3$   
 $a + k = (1) + (-5) = -4$ 

2. 
$$y = 2x^{5} + 4$$
  
Resent:  $x^{5}$   
 $a = 2$   $h = 0$   
 $b = 1$   $k = 4$   
 $(-1)^{n}a + k = (-1)^{5}(2) + 4 = 2$   
 $k = 4$   
 $a = 4$   
 $a + k = 2 + 4 = 6$ 



| 4. $y = \frac{1}{3}(x-4)^4 + 6$ |                                                    |  |  |
|---------------------------------|----------------------------------------------------|--|--|
| Parent: X4                      | 8                                                  |  |  |
| $a=\frac{1}{3}$ h=4             | 4                                                  |  |  |
| b=1 $k=G$                       | 5                                                  |  |  |
|                                 |                                                    |  |  |
| ×                               |                                                    |  |  |
| (-1)b+h=(-1)(1)+4=3             | $(-1)^{n}a+k=(-1)^{4}(\frac{1}{3})+6=6\frac{1}{3}$ |  |  |
| h = 4                           | k = 6                                              |  |  |
| b+h = 1+4=5                     | $a+k=\frac{1}{3}+6=6\frac{1}{3}$                   |  |  |

Use the two links below for additional practice in graphing functions.

https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:quadratic-functions/x2f8bb11595b61c86:vertex-form/e/graphing\_parabolas\_1

https://www.eatoncommunityschools.org/userfiles/23/Classes/5310/graphs%20of %20parabolas%20-%20vertex%20form.pdf?id=15574